Use your own types in geometric algebra expressions
Inputs
If the type you use supports indexing, e.g. Vector, it already works:
using SymbolicGA
x = rand(3)
y = rand(3)
@ga 3 x::1 ∧ y::1Bivector{Float64, 3, 3}(0.26469749987977, 0.0890482108730837, -0.4593467288220951)If your type does not support indexing, and you don't want it to, overload SymbolicGA.getcomponent(::T, [i::Int, [j::Int]]):
struct MyInputType{T}
values::Vector{T}
end
SymbolicGA.getcomponent(x::MyInputType, i::Int) = x.values[i]
x = MyInputType(rand(3))
y = MyInputType(rand(3))
@ga 3 x::1 ∧ y::1Bivector{Float64, 3, 3}(0.09244282628243007, 0.11810953021924389, 0.05889841281861452)For scalars and aggregates of objects with multiple grades, you will need to overload SymbolicGA.getcomponent(::T) and SymbolicGA.getcomponent(::T, j::Int, i::Int) respectively (see SymbolicGA.getcomponent).
Outputs
If you want to reconstruct a custom type from components, either define a constructor for a single tuple argument, e.g. T(components::Tuple)
struct MyOutputType{T}
values::Vector{T}
end
MyOutputType(x::Tuple) = MyOutputType(collect(x))
x = rand(3)
y = rand(3)
@ga 3 MyOutputType dual(x::1 ∧ y::1)Main.MyOutputType{Float64}([-0.11701381887481559, -0.0015584295138336077, 0.7178465870381671])If you don't want such constructor to be defined, you can overload SymbolicGA.construct(::Type{T}, ::Tuple) directly:
struct MyOutputType2{T}
values::Vector{T}
end
SymbolicGA.construct(T::Type{<:MyOutputType2}, x::Tuple) = MyOutputType2(collect(x))
x = rand(3)
y = rand(3)
@ga 3 MyOutputType2 dual(x::1 ∧ y::1)Main.MyOutputType2{Float64}([-0.5125818151701541, 0.2531902465605811, 0.3805843467449878])Integrations for Vector, Tuple and <:Real have already been defined:
@ga 3 Tuple dual(x::1 ∧ y::1)(-0.5125818151701541, 0.2531902465605811, 0.3805843467449878)@ga 3 Vector dual(x::1 ∧ y::1)3-element Vector{Float64}:
-0.5125818151701541
0.2531902465605811
0.3805843467449878z = rand(3)
@ga 3 Float16 dual(x::1 ∧ y::1 ∧ z::1)Float16(0.4924)This page was generated using Literate.jl.